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Abstract —The recently developed iterative extended boundary condi-
tion method (IEBCM) has been used to compute the internal fields induced
in homogeneous, axisymmetric, lossy dielectric objects of large aspect
ratios when exposed to incident planewave radiation. Calculations were
made for both the E- and k-polarization cases. The computed results for a
prolate spheroidal model of an average man are found to be accurate for
frequencies up to 300 MHz, while the use of the popular EBCM [1] was
found to be essentially restricted to frequencies less than 70 MHz for these
models and exposure conditions.

The applicability of the IEBCM to composite bodies has also been
examined by studying the irradiation of a capped cylindrical object. This
composite object was first partitioned into several overlapping spherical
subregions, and, alternatively, into two spherical subregions overlapping
with a central cylindrical subregion. Spherical harmonics were used to
represent the internal fields in the spherical subregions, while cylindrical
expansions were utilized in the cylindrical subregions. It is shown that the
second partitioning scheme is more computationally efficient and thereby
suggests that the basis functions used to represent the subregional fields
should be compatible with the subregional geometry. The new IEBCM,
therefore, is a very valuable procedure which provides the opportunity of
using the mixed basis functions in the solution.

I. INTRODUCTION

N ONGOING research project at the University of

Utah has been the theoretical quantitation of the
energy deposition in biological objects exposed to non-
ionizing radiation at the lower microwave frequencies. In
this context, some of the first studies carried out involved
the characterization of the power absorption in homoge-
neous, lossy dielectric, prolate spheroidal models of hu-
mans and animals exposed to plane waves and various
near-field sources [1]-[7]. In all of these references, the
electromagnetic (EM) boundary value problem, associated
with the scattering and the absorption of the EM waves by
the lossy dielectric spheroids, was solved using the popular
extended boundary condition method (EBCM) initially
formulated by Waterman [8], [9] and extensively used by
others in several alternative formulations [10]-[12] for vari-
ous other applications [13]-[15]. We noticed, however, that
the EBCM fails to yield convergent internal field distribu-
tions in lossy dielectric objects in the resonance and the
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post-resonance frequency ranges for objects of large aspect
ratios. By the term “aspect ratio” we mean the ratio of the
largest to the smallest linear dimensions of the object. This
deficiency in the EBCM is due to the use of the ill-condi-
tioned system of equations that result from taking a large
number of terms in order to force a single vector spherical
harmonic expansion [16] to fit a nonspherical object [17].

In order to overcome the convergence-related stability
problems in the EBCM, we have proposed and examined a
new iterative technique elsewhere [18], [19]. This technique,
called the iterative EBCM (IEBCM), is an iterative proce-
dure which has two main features: a) it requires an initial
estimate of the tangential fields on the object surface, and
b) the fields induced inside the object are represented by
several overlapping subregional expansions. Since the bio-
logical objects are characterized by large, complex relative
permittivities, the initial estimate required by a) may be
obtained by replacing the dielectric object by a perfectly
conducting one of the same shape and size, and then
solving for the current densities on the surface of the
substitute object as has been suggested by others previously
[20], [21]. The specific use of the several subregional expan-
sions to represent the internal fields as indicated in b), on
the other hand, allows us to obtain continuous and conver-
gent internal field values throughout the internal volume
by partitioning the object volume into a number of over-
lapping subregions, in each of which a separate internal
field representation is assumed. In addition, these subre-
gional expansions are linked to each other by being ex-
plicitly matched in the appropriate overlapping zones. Since
all the subregional internal field expansions are simulta-
neously solved for in any given iterative step of the IEBCM,
continuous and convergent internal field distributions are
assured.

In this paper we present the application of the IEBCM
to calculate the power absorption in biological models
exposed to incident plane-wave radiation in the resonance
and the post-resonance frequency ranges. Specifically, we
compute the average specific absorption rate (SAR) [2] in a
prolate spheroidal model of an average man exposed to
incident E- and k-polarized plane waves [2]. In addition,
we also examine the application of the IEBCM to solving

0018-9480,/83 /0800-0640$01.00 ©1983 1EEE



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-31, NO. 8, AUGUST 1983

for composite bodies, for which purpose the internal fields
induced inside a capped cylindrical model of an average
man were computed. The interior volume of the capped
cylindrical object was first divided into several overlapping
spherical subregions and the fields in each of which were
expressed in terms of the vector spherical harmonics. The
same volume was alternatively partitioned into a finite
cylindrical subregion in the middle section and two spheri-
cal subregions to account for the hemispherical end caps.
Spherical expansions were used in the two spherical subre-
gions and a cylindrical expansion was utilized for the
cylindrical subregion. Numerical results illustrating the im-
portance and the limitations of using different basis func-
tions are presented. In particular, we shall present results
to compare the computational efficiency incurred in the
use of the different basis functions to represent the various
subregional fields induced in the interior volume of this
object.

II. FORMULATION

The IEBCM formulation has been discussed in an earlier
publication by our group [19], but for the sake of complete-
ness, a summary of the procedure is presented here. Con-
sider a biological model having a volume ¥ bounded by a
closed smooth surface S, which lies totally inside a mini-
mum sphere I' and is characterized by a complex relative
permittivity €*, as shown in Fig. 1. For a given incident
EM field { E'(F), H (7)} at any point 7 specified with
respect to an origin O located suitably inside the model, it
is desired to compute the fields induced inside the lossy
dielectric volume V. By using the equivalence principle, the
fields induced inside the object are replaced by equivalent
electric and magnetic surface current densities. Therefore,
upon applying the boundary conditions on the surface S
and equating the total fields in the interior of the model to
zero, the following integral equation for the external elec-
tric and magnetic fields, E, and H,, on the surface S is
obtained [22]:

- E(7)=v % fs[ﬁ(f')xbi (7)]-G (kF|kF") ds’

VX VX Lﬁ%[ﬁ(f’)xﬁ+ (7)]-G (kFik#") ds' (1)

where k = ‘“’M is the free-space wavenumber, 7 is a unit
outward normal to S, and G(kF|k7’) is the free-space
transverse Green’s dyadic function discussed in [23].

Equation (1) is the basic equation involved in EBCM [§],
[22], and it is modified into a form suitable for the /th
(! > 0) IEBCM iteration as follows [18], [19]:

{Ei(f)Jr Ax fs[ﬁ(f’)x EYO(7)]-G (kr|kr') ds’

1
Joe,

-V X VX [S [A(7)x HY7Y(7)] -G (kF|kF") ds’}

L [4(7)x ATD ()] -G (kFlk") ds'.

TvxvX fsf"-"o
(2)
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Fig. 1. Geometry associated with the IEBCM formulation. The various

electromagnetic quantities involved are also represented.

In (2), the only unknown quantity is the incremental
electric surface current density 7 X AH(, as E' is the
known incident field and E{; " and HY V are known
from the solution of the (/ — 1)th iteration. It may be noted
that (2) is equivalent to solving for the electric surface
current density on the surface of a perfectly conducting
object [24], [25] for a modified incident field as given by
the left-hand side of (2). In particular, for the /=0 itera-
tion, the quantities E;,» and A,V on the left-hand side
of (2) are identically zero, so that the /=0 iteration itself
serves as the initial approximation on the external surface
fields as required by IEBCM [19] provided that the object
is assumed initially to be perfectly conducting. A step-by-
step description of the /th iteration is now outlined as
follows.

Step 1

a) The left-hand side of (2) is composed of two known
quantities, the incident field E°(7) and the integro-
differential expressions involving the quantities E{/, D
and H{;V known from the previous iteration. To-
gether these two quantities are expanded in terms of
the vector spherical harmonics M'(k7) and N'(k7)

with known expansion coefficients, i.e., [16]
LHS (2) = X D,{a,M'(k7 )+ b,N}(k7)} (3)

where {a,, b,} are the expansion coefficients, D, is a
normalization term, while the composite index » is
actually a triple-index defined in [19]. It may be
noted that for the / = 0 iteration (which also serves as
the initial assumption), the fields E{,;V and A, are
identically zero so that {a,, b,} are the coefficients
for a vector spherical harmonic expansion of the
known E'(7) alone.

b) Likewise, the incremental external surface current
A X AHPis expanded as follows [24], [25]:

AXAHP=Y{ p,[Ax M} k)]

+q,[AXNY(k7)]} (4)
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where {p,,q,} are the unknown coefficients to be
determined in this step.

¢) Equations (3) and (4) are suitably truncated [25] and
substituted in (2). Thereupon applying the ortho-
gonality properties of the vector spherical harmonics,
(2) is reduced to a system of simultaneous equations,
which are then solved for the unknown coefficients
{P,4,} _

d) The external surface magnetic field H{” in the /th
iteration is then calculated as the sum of the previ-
ously calculated value H{¢™V and the incremental
surface magnetic field AH calculated for the /th
iteration in c) above; i.e.,

A= B¢+ AFO, (5)

It should be noted that although the solution procedure
described in Step 1 is based on the regular EBCM, it could
have, and it actually has been, alternatively solved using
other methods such as the method of moments. Obviously
there is no restriction on the specific method that can be
used to obtain the initial assumption. We used the regular
EBCM method to obtain the initial solution just for con-
venience since it is known that Waterman’s solutions for
conducting objects of aspect ratios as large as those of the
models used in our calculations are still accurate [25]. This
should not, however, be confused with the inadequacy of
Waterman’s method for dielectric objects of the same aspect
ratios.

Step 2

a) The interior of the object is divided into a number of
overlapping subregions ¥, as shown in Fig. 2 for
the two geometries used in this paper. In each V',
the internal fields {E\),, HY),} are expanded in
terms of a finite number of orthogonal functions,
¥, (k'F), appropriate to the subregional geometry, with
the unknown expansion coefficients to be de-
termined; and k' = k\/g .

b) To determine these unknown internal field expansion
coefficients, the boundary condition

A(F)x HP(F) = a(F)X HS) () (6)
is satisfied on a suitable number of points on each of
the subsurfaces S and, in addition, the continuity of

the internal magnetic field is enforced at a suitable
number of points in each of the overlapping zones

OV(1.1+1)
Ilz(rtlt),i(f)=171(rllt),i+1(f) (7)

where i and i +1 are two adjacent overlapping subre-
gions.

¢) Finally, the set of equations developed from (6) and
(7) are simultaneously solved to determine the un-
known coefficients of the multiple subregional inter-
nal field expansion. In this way the internal magnetic
field H{), and the electric field £}, in the dielectric
volume are determined in the /th iteration.

The iterative procedure as outlined in the Steps 1 and 2

above continues till the incremental electric surface current
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Fig. 2. Schematic illustrating the partitioning of the object volume V'
into subvolumes ¥ of convenient geometries. (a) The ith subregion
has a subsurface S, and the shaded regions are the overlapping zones
ov®+D (18], [19]. (b) Prolate spheroid subdivided into spherical
subregions. Capped cylinder subdivided into (c) spherical subregions,
and (d) into two spherical and one cylindrical subregions.

density 7 X AH{) on the right-hand side of (2) becomes
almost zero, thus meeting the preset error criterion.

Once the internal field distribution has been obtained
inside the model using the IEBCM, the absorbed power
distribution is calculated as 1,/20|E,,,(F)|* where o is the
conductivity of the dielectric object. The average specific
absorption rate (SAR), defined as the volume-normalized
power deposition when the model is exposed to an incident
power density of 10 W /m?, is then obtained by averaging
the absorbed power distribution over the entire model
volume.

III. DESCRIPTION OF THE COMPUTER PROGRAM

The TEBCM solution technique described above was
implemented on the University of Utah UNIVAC 1161
computer. Specific cases of the incident plane-wave polari-
zation, as well as specific object geometries, were consid-
ered in this program, and in this section we describe the
salient features of the computer implementation of the
IEBCM procedure.

The program was written in order to treat each m-order
azimuthal mode separately since in the IEBCM, as well as
in the EBCM [8], [25], it is possible to decouple the
azimuthal modes when considering axisymmetric objects.
The computer program has three chief subroutines, each of
which shall now be discussed. In the MAIN routine the
dielectric volume V is treated as a perfectly conducting
object, and estimates of the surface electric current density
A X H?" are obtained using the regular EBCM [25] in the
[th iteration. Parenthetically, it should be noted that be-
cause of the smaller number of the coefficients required to
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i

obtain a solution for the perfectly conducting objects, the

regular EBCM solution procedure does not suffer from the

ill-conditioning problems such as those encountered in
the use of the EBCM for the case of lossy dielectric objects.
The left-hand side of (2) is expanded in terms of the vector
spherical harmonics, and known expansion coefficients
{a, b} are calculated for this expansion (3). A matrix
defined in [25] is then calculated to relate the unknown
coefficients { p,,q,} of the incremental surface electric
current density expansion A X AH'), on the surface of the
substitute perfectly conducting object, to the coefficients
{a,,b,}. This matrix equation is then solved using the
well-known LU decomposition scheme [26] to yield the
coefficients of the expansion (4). This calculated increment
i X AHPis then added to the value of # X H{~ Y from the
previous step, so that the output of the MAIN routine is a
refined estimate 7 X H{ of the surface current density.

Once the estimate of 7i X H{" has been obtained for the
particular azimuthal mode from the MAIN routine, then in
the next subroutine STAGE2 a point-matching technique
[27] is utilized to calculate the fields induced inside the
actual dielectric object. As has been indicated previously,
separate induced field expansions in terms of the basis
functions ¢, (k'F) are assumed in each subregion V.
Collocation of the known 7 X H{ is carried out with the
unknown 7 X 17,(,,’,) ; at suitable points on the corresponding
subsurface S to yield the system of (6); and the continu-
ity of the internal fields is enforced by using the additional
equations (7). In this way, by solving (6) and (7) simulta-
neously, the internal field expansions in all of the subre-
gions V' are determined together.

Finally, with the knowledge of the estimates of the
internal fields E{) and H{ in the /th step of the IEBCM,
the program moves on into the last subroutine, called
STAGE3. The quantity evaluated in this subroutine is

v x [[A(F) X EG(F)]-G (krikr') ds'
9% v X [ (A7) B (ki) ds”
s wes i

which is the term to be added to the incident field E°(7) in
the left-hand side of (2) for the (/+1)th iteration. In
calculating this term, the integrations over the surface S are
carried out using the Gauss-Legendre quadrature scheme
[28].

IV. NUMERICAL RESULTS

As has been indicated above, we have chiefly utilized the
IEBCM to study the power absorption characteristics of
the axisymmetric, homogeneous, lossy dielectric models of
biological objects irradiated by an incident plane wave at
frequencies in and above the resonance frequency range.
Average SAR values were calculated at different frequen-
cies for the different models of an average man. Relevant
information about the model dimensions, as well as about
the relative complex permittivity of the model as a function
of frequency, was obtained from [2].
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Fig. 3. Average SAR induced in a prolate spheroidal model of an
average man (a = 0.875 m, a/b = 6.34) irradiated by an E-polarized
plane wave. ——- is data from the block model of man [29], »s* from the
prolate spheroidal model using EBCM [1, 2], —+—+~ from an empirical
formula [31], and —— from cylindrical models and geometrical optics
[30]. The stars represent the calculated IEBCM results.

Studies conducted on the plane-wave exposure of the
prolate spheroidal models have demonstrated that the max-
imum low-frequency absorption occurs when the incident
electric field is oriented parallel to the major axis of the
spheroid [1], [2]. This incident polarization, called the
E-polarization, is, therefore, of great interest. For this
polarization we tested the accuracy of the IEBCM solution
technique as well as the continuity of the multiple subre-
gional internal field expansion scheme, and the satisfactory
results thus obtained have been reported in an earlier
paper [19].

The calculated average SAR values obtained for the
E-polarized plane-wave exposure of the man model are
illustrated in Fig. 3, where they are compared with the
results previously obtained using various computational
and experimental approaches [1], [29]-[33]. It is clear from
Fig. 3 that the IEBCM results agree very well with those
obtained using the method of moments. Also, the IEBCM
results for the spheroidal model showed fluctuations in the
SAR values similar to those previously calculated using the
block model of man [29]. Therefore, it is highly unlikely
that these fluctuations are due to the part-body resonances,
as indicated by others [29], [34], but instead they seem to
be due to the higher order resonances. It should also be
noted that the IEBCM made it possible to perform calcula-
tions up to 300-MHz frequency, which is about five times
higher than that possible using the regular EBCM [1], [2].

For the E-polarized plane-wave exposure case we have
discussed so far, the initial assumption on the external
surface fields, as required by the IEBCM, was obtained, as
indicated earlier, by replacing the lossy dielectric object by
a perfectly conducting one of the same shape and size.
Such a procedure, however, did not yield satisfactorily
convergent internal field values even at 27 MHz for the
case of the k-polarized plane-wave exposure of the man
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model, i.e., when the incident wave propagation vector is
aligned parallel to the major axis of the spheroid. The
solution procedure for the k-polarization case was found to
be particularly sensitive to the initial assumption, and
hence we employed two other schemes to obtain conver-
gent results. In the first scheme, we used another spheroidal
model of the same shape and size but with the conductivity
scaled up several times to be an intermediate step between
the initial estimate and the biological model of interest.
After obtaining a good convergent solution for this inter-
mediate model, we used the solution thus obtained as an
initial assumption for the biological model. More such
intermediate steps were usually found necessary to finally
get a convergent solution for the man model. This succes-
sive reduction of conductivity from a considerably larger
value—usually between two to four times—to its actual
value provided us with a good initial assumption for the
problem involving the actual model conductivity, and we
used this scheme for calculating stable and convergent
internal field values up to 60 MHz for the man model.

The second scheme we employed involved the use of the
internal fields calculated at a lower frequency to provide
an initial assumption for the internal field calculation at
the higher frequency of interest. For example, we used the
internal fields calculated at 60 MHz to provide us with the
starting solution at 120 MHz; and so on. This specifically
allowed us to calculate results from 120 MHz to 300 MHz
more economically than the first scheme mentioned above
would have permitted us. This is because the number of
iterations required for a convergent IEBCM solution was
significantly reduced by the use of the second scheme.

An interesting consequence resulting from the utilization
of this second scheme is that it may be possible to hybridize
the IEBCM with the available specialized low- and high-
frequency techniques commonly used for solving EM boundary
value problems [35], [36]. Specifically, an “approximate”
solution can be obtained either at a very low frequency or
at a very high frequency using perturbational or asymptotic
methods. This solution can, then, in turn, be used in the
IEBCM solution procedure to calculate the correct fields at
mid-range frequencies using the idea of a translation in
frequency incorporated in the second scheme described
above.

The calculated average SAR values for the k-polarized
incident plane-wave exposure of the average man are il-
lustrated in Fig. 4, where they are compared with the
existing results obtained using the regular EBCM [1], [2] as
well as from the surface integral equation (SIE) technique
[37], [38] at higher frequencies. As is clear from Fig. 4, the
correspondence between the IEBCM results and the exist-
ing average SAR values is satisfactory. In addition, as has
already been pointed out, the use of IEBCM allows the
calculation of stable internal field values at frequencies
considerably higher than those permitted by the regular
EBCM [2].

The various parameters in the computations of the E-
polarized exposure case have already been presented in
[19]. In most respects, the general computational considera-
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Fig. 4. Average SAR induced in a prolate spheroidal model of an
average man (a = 0.875 m, a/b=6.34) irradiated by a k-polarized
plane wave. * is data from the same model using EBCM [1], [2], ——-
from a capped cylindrical model using the SIE technique {38], and — —
— represent the estimated values [42]. The stars represent the calcu-
lated IEBCM results.

tions for the k-polarization case presented here are the
same as for the E-polarized plane-wave incidence case.
Due to the different methods of obtaining the initial as-
sumption in the surface fields required for the k-polariza-
tion case, however, the number of iterations required for a
convergent IEBCM solution is different from this exposure
case. For the results shown in Fig. 4, three intermediate
steps were required in the resonance frequency range. In
the post-resonance range, however, results at a given
frequency were computed using the computations made
already at a lower frequency and so the IEBCM required a
total of three to four iterations to converge. Although the
model volume V was partitioned into nine overlapping
spherical subregions at all the frequencies shown in Fig. 4,
we feel, from the available results, that while only three
subregions would have been adequate at 27 MHz, five
would be required at 60 and 120 MHz, but nine would
surely be needed at the higher frequencies. In addition, the
number of the subregional field expansion coefficients
varied from nine to twelve, the choice of the larger number
being dependent on the electrical size and on the curvature
of the particular subregion in a manner similar to that for
the E-polarized plane-wave incidence case [19].

V. EXTENSION oF IEBCM 10 COMPOSITE OBJECTS

The dielectric object considered so far is a prolate
spheroid which is an example of a body whose surface can
be defined by a single equation. A composite body, on the
other hand, is constructed from several such simple bodies
and thus has a surface defined by several equations in
different sections of the total body. In order to investigate
the applicability of the IEBCM solution procedure for
composite bodies, we considered a lossy dielectric body
made up of a finite cylinder with hemispherical end caps
on either end, as shown in Fig. 2(c) and (d). It may be
mentioned that such a body has a continuous normal
everywhere on its surface.

The subregional geometry chosen for this body is im-
mediately suggested by the object geometry itself. The
capped cylinder was partitioned into a central finite cylin-
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drical subregion with two spherical subregions on either
end, as illustrated in Fig. 2(d). Spherical expansions [16]
were used to represent the internal fields in the spherical
subregions. The basis functions chosen for the cylindrical
subregion will be considered in detail next.

The possible solutions of the scalar wave equation (V2
+ k’?)¢ = 0, regular at the origin, are given in a cylindrical
coordinate system by [39]

Y= Jm(Ynmp)ei(jﬂnmz)ei(jm¢) (8)

where J,,(x) are the integral-order cylindrical Bessel func-
tions, and

Yrtzm + n2m = k’z' (9)
Since we considered only the k-polarized plane-wave
irradiation of this object, the azimuthal symmetries allowed
us to consider the m =1 mode alone. Consequently, after
dropping the index m in (8) and choosing the appropriate
combinations of ¢, the following four solutions to the wave
equation need alone be considered:

2= I, (vSTp) ¢{

cos( Bz )
sin ( Bz ) { even
o =
) cos ( ,B(TE)Z) odd
IP (Yan )Sm¢ sm(,B(TE)z)

(10)
where the superscripts TM and TE denote the familiar
transverse magnetic and electric modes, respectively, and o
can acquire two values—even or odd.

If now the vector potentials A and F are written as

A=2y™, F=sy™ (1)
then the electric and the magnetic fields can be obtained
thus

E=-vVXF+ jopyd— -
J

1 _
CVv(v-4) (12a)
H=v XA+ jwe e*F——L—V(V-F—)
or Jorg '
It is well known that the various B,,’s used in (10) have a
continuous spread of values from zero onward [23]. Com-
putations involving a continuum of 8, values would, how-
ever, be prohibitively impractical on a digital computer.
We therefore chose discrete values of the 8, in the follow-
ing manner. If the cylindrical region of total height 2(# — a)
in Fig. 2(d) is enclosed by two infinite perfectly conducting
planes at z = 4 d, d > h — a, then the electric field compo-
nents E, and E, must be identically zero everywhere on
these two conducting planes at z = 1 d. This permits us to

(12b)

select discrete values of the various B_,’s as
~1ax
(TM) Q(TE) .. = e
B B 2 d b n 1727
,B(TM)—nz, n=0,1,2,--
B};{E)—ng n=1,2,-- (13)
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Fig. 5. Electric and magnetic surface current densities induced on a
thick muscle capped cylinder (27 =075 A, a=02 A, €=60 ¢, 0 =10
Q7 'm™1) irradiated by an incident k-polarized plane wave. J = J,cos
q>t+J¢sm¢¢, ‘K=K smcbt+K cos ¢; where 7 and ¢ are the unit
transverse vectors in a (7, 7, ¢) coordlnate system. The ordinate 7 is 0 at
the lower end of the body and has a value of 30 at the upper end.

The choice of d itself in (13) is critical since in the real
geometry of the problem the infinite conducting planes are
nonexistent. In addition, d > k& — a since the true fields in
the actual problem do not vanish at the ends of the
cylindrical region or inside the body also. However, a
suitable choice of d does provide us with a convenient
discrete mode representation of the fields in the cylindrical
region. We used several values of d in our calculations, and
by checking on the convergence of the internal field distri-
butions with respect to d, we were able to choose ap-
propriate values of d.

Once the field representation inside the central cylindri-
cal region was thus fixed, we tested the validity of the
cylindrical expansion scheme as well as the applicability of
the IEBCM to composite bodies by comparing the surface
current densities obtained using the IEBCM calculations
with those obtained for a similar object used by Wu and-
Tsai [40] using the SIE technique. The object chosen had a
total height 2/ = 1.5\ with a cross-sectional radius a = 0.2A,
and a permittivity of 60¢, with a conductivity of 1.0
Q2 m™L

The surface current densities, J=#4 X H, and K= E, X
7i, obtained by the IEBCM calculations are compared with
Wu and Tsai’s computed values in Fig. 5. As is clear from
this figure, the correspondence between the surface current
densities obtained from the two solutions is very good, and
thus validates both the use as well as the applicability of

. the IEBCM in solving for problems involving composite

bodies. It may be mentioned here that 4 in (13) was chosen
to be equal to & + 18a for this calculation.

We finally address the issue of the choice of the basis
functions used to represent the subregional internal fields
induced inside the irradiated object. As has been indicated
earlier, the JEBCM formulation is not restricted to the use
of specific basis functions, and the choice of a particular
set of basis functions should depend both on the subre-
gional geometry as well as on the ease in generatmg these
functions on a digital computer.

A convenient example was provided for this purpose by
the case of the k-polarized plane-wave exposure of the
composite capped cylinder discussed above. The interior
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volume of the capped cylinder was first partitioned into
spherical subregions as shown in Fig. 2(c) and the fields in
each were expressed in terms of the spherical harmonics.
Next, the same volume was divided into a central cylindri-
cal subregion with two spherical subregions at both ends,
as illustrated in Fig. 2(d). The cylindrical expansions de-
scribed earlier were used to represent the fields in the
cylindrical subregion, while the fields in the two spherical
subregions were expressed in terms of the spherical
harmonics.

On comparing the fields obtained inside such a capped
cylindrical model of an average man (A =0.875 m, a=
0.1154 m), at frequencies of 50 MHz and 300 MHz, we
obtained good agreement in the results obtained using the
two partitioning schemes. However, the reduction in the
computational time when using the cylindrical expansions
was considerable. By using nine spherical expansions to
represent the internal fields, we utilized a total of 200
coefficients to determine the internal fields at both the
frequencies considered, and the total CPU time expended
per iteration ran into 200 s on the UNIVAC 1161 com-
puter. On utilizing the cylindrical expansions in the central
cylindrical subregion, on the other hand, the total number
of the internal field coefficients was reduced to 88 at 50
MHz and to 104 at 300 MHz. This resulted in the CPU
time expended to 77 s at 50 MHz and 114 s at 300 MHz on
the same computer. This considerable reduction in com-
puter time on using the interior partitioning scheme utiliz-
ing the cylindrical expansions is primarily due to the
drastically reduced size of the point-matching matrix out-
lined in Step 2 of Section III. It should also be noted that
the number of spherical expansions used in the partitioning
scheme, which uses spherical subregions exclusively, did
not lessen from nine at 50 MHz, the lower of the two
frequencies considered. Schemes utilizing five and seven
spherical expansions were experimented with at 50 MHz,
but the smaller number of the spherical subregions thus
used failed to represent the cylindrical volume adequately.

Since the total number of the IEBCM iterations required
to obtain a convergent solution, however, did not change
on using either of the subdivision schemes, we can con-
clude that it is more advantageous from the point of
computational efficiency to choose convenient subregional
geometries to represent the total model volume V. In
addition, the basis functions used to represent the subre-
gional fields should also be compatible with the subre-
gional geometries used. It should be noted that although
the iterative nature of the IEBCM facilitates the mechani-
cal implementation of the solution procedure [20], [21], the
key to the significant improvement of the regular EBCM is
the use of the multiple subregional internal field expansion
scheme [19], [41].
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